Structure and biodegradation mechanism of milled Bombyx mori silk particles

68Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The aim of this study was to understand the structure and biodegradation relationships of silk particles intended for targeted biomedical applications. Such a study is also useful in understanding structural remodelling of silk debris that may be generated from silk-based implants. Ultrafine silk particles were prepared using a combination of efficient wet-milling and spray-drying processes with no addition of chemicals other than those used in degumming. Milling reduced the intermolecular stacking forces within the β-sheet crystallites without changing the intramolecular binding energy. Because of the rough morphology and the ultrafine size of the particles, degradation of silk particles by protease XIV was increased by about 3-fold compared to silk fibers. Upon biodegradation, the thermal degradation temperature of silk increased, which was attributed to the formation of tight aggregates by the hydrolyzed residual macromolecules. A model of the biodegradation mechanism of silk particles was developed based on the experimental data. The model explains the process of disintegration of β-sheets, supported by quantitative secondary structural analysis and microscopic images. © 2012 American Chemical Society.

Cite

CITATION STYLE

APA

Rajkhowa, R., Hu, X., Tsuzuki, T., Kaplan, D. L., & Wang, X. (2012). Structure and biodegradation mechanism of milled Bombyx mori silk particles. Biomacromolecules, 13(8), 2503–2512. https://doi.org/10.1021/bm300736m

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free