Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires

  • Wen C
  • Reuter M
  • Tersoff J
 et al. 
  • 102


    Mendeley users who have this article in their library.
  • 97


    Citations of this article.


We use real-time observations of the growth of copper-catalyzed silicon nanowires to determine the nanowire growth mechanism directly and to quantify the growth kinetics of individual wires. Nanowires were grown in a transmission electron microscope using chemical vapor deposition on a copper-coated Si substrate. We show that the initial reaction is the formation of a silicide, eta'-Cu3Si, and that this solid silicide remains on the wire rips during growth so that growth is by the vapor-solid-solid mechanism, Individual wire directions and growth rates are related to the details of orientation relation and catalyst shape, leading to a rich morphology compared to vapor-liquid-solid grown nanowires. Furthermore, growth occurs by ledge propagation at the silicide/silicon interface, and the ledge propagation kinetics suggest that the solubility of precursor atoms in the catalyst is small, which is relevant to the fabrication of abrupt heterojunctions in nanowires.

Author-supplied keywords

  • Cu 3si catalyst
  • In situ transmission electron microscopy
  • Si nanowires
  • Vapor-solid-solid growth mechanism

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free