Synthesis, anticancer activities, and cellular uptake studies of lipophilic derivatives of doxorubicin succinate

  • Chhikara B
  • Mandal D
  • Parang K
  • 22


    Mendeley users who have this article in their library.
  • 22


    Citations of this article.


A number of lipophilic 14-substituted derivatives of doxorubicin were synthesized through conjugation of doxorubicin-14-hemisuccinate with different fatty amines or tetradecanol to enhance the lipophilicity, cellular uptake, and cellular retention for sustained anticancer activity. The conjugates inhibited the cell proliferation of human leukemia (CCRF-CEM, 69-76%), colon adenocarcinoma (HT-29, 60-77%), and breast adenocarcinoma (MDA-MB-361, 66-71%) cells at a concentration of 1 μM after 96-120 h of incubation. The N-tetradecylamido derivative of doxorubicin 14-succinate (10) exhibited consistently comparable antiproliferative activity to doxorubicin in a time-dependent manner (IC(50) = 77 nM in CCRF-CEM cells). Flow cytometry analysis showed a 3-fold more cellular uptake of 10 than doxorubicin in SK-OV-3 cells. Confocal microscopy revealed that the conjugate was distributed in cytoplasmic and perinuclear areas during the first 1 h of incubation and slowly relocalized in the nucleus after 24 h. The cellular hydrolysis study showed that 98% of compound 10 was hydrolyzed intracellularly within 48 h and released doxorubicin.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free