Technology Roadmap Solar Thermal Electricity

  • IEA
N/ACitations
Citations of this article
411Readers
Mendeley users who have this article in their library.

Abstract

Current trends in energy supply and use are unsustainable – economically, environmentally and socially. Without decisive action, energy-related greenhouse-gas (GHG) emissions would lead to considerable climate degradation with an average 6°C global warming. We can and must change the path we are now on; sustainable and low-carbon energy technologies will play a crucial role in the energy revolution required to make this change happen. Energy Efficiency, many types of renewable energy, carbon capture and storage (CCS), nuclear power and new transport technologies will all require widespread deployment if we are to achieve a global energy-related CO2 target in 2050 of 50% below current levels and limit global temperature rise by 2050 to 2°C above pre-industrial levels. This will require significant global investment into decarbonisation, which will largely be offset by reduced expenditures on fuels. Nonetheless, this supposes an important reallocation of capital. To address this challenge, the International Energy Agency (IEA) is leading the development of a series of technology roadmaps which identify the steps needed to accelerate the implementation of technology changes. These roadmaps will enable governments, industry and financial partners to make the right choices – and in turn help societies to make the right decision. Solar thermal electricity (STE) generated by concentrating solar power (CSP) plants is one of those technologies. It has witnessed robust growth in the last four years, although less than expected in the 2010 IEA technology roadmap. More importantly, the technology is diversifying, creating pathways that promise to increase deployment by reducing costs and opening new markets. Meanwhile, the rapid deployment and the decrease in costs of solar photovoltaics (PV), as well as other important changes in the energy landscape, notably greater uncertainty in regard to nuclear power and CCS, have led the IEA to reassess the role of both solar technologies in mitigating climate change. The interesting outcome of this reassessment is that the vision set for STE four years ago, to reach about 11% of global electricity generation by 2050, has remained unchanged – despite the increased prospects for PV deployment. Their built-in storage capabilities allow CSP plants to supply electricity on demand. This decisive asset is already being used to generate electricity when demand peaks after sunset in emerging economies with growing capacity needs. This advantage will only gain in importance as variable renewable energy sources such as PV and wind power increase their shares of global electricity. Hence this updated roadmap envisages reduced medium-term prospects for STE deployment, but almost no reduction in long-term prospects. Countries must establish stable policy frameworks for investments in CSP plants to take place. Like most renewables or energy efficiency improvements, STE is very capital intensive: almost all expenditures are made upfront. Lowering the cost of capital is thus of primary importance for achieving the vision of this roadmap. Clear and credible signals from policy makers lower risks and inspire confidence. By contrast, where there is a record of policy incoherence, confusing signals or stop‐and‐go policy cycles, investors end up paying more for their investment, consumers pay more for their energy, and some projects that are needed simply will not go ahead. I strongly hope that the analysis and recommendations in this roadmap will play a part in ensuring the continued success of STE deployment and, more broadly, a decarbonised energy system. This publication is produced under my authority as Executive Director of the IEA.

Cite

CITATION STYLE

APA

IEA. (2014). Technology Roadmap Solar Thermal Electricity. International Energy Agency (IEA), 52. Retrieved from www.iea.org

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free