Temperature dependence of the anharmonic decay of optical phonons in carbon nanotubes and graphite

  • Chatzakis I
  • Yan H
  • Song D
 et al. 
  • 38

    Readers

    Mendeley users who have this article in their library.
  • 34

    Citations

    Citations of this article.

Abstract

We report on the temperature dependence of the anharmonic decay rate of zone-center (G mode) optical phonons in both single-walled carbon nanotubes and graphite. The measurements are performed using a pump-probe Raman scattering scheme with femtosecond laser pulses. For nanotubes, measured over a temperature range of 6 K-700 K, we observe little temperature dependence of the decay rate below room temperature. Above 300 K, the decay rate increases from 0.8 to 1.7 ps-1. The decay rates observed for graphite range from 0.5 to 0.8 ps-1 for temperatures from 300 K-700 K. We compare the behavior observed in carbon nanotubes and graphite and discuss the implications of our results for the mechanism of the anharmonic decay of optical phonons in both systems.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free