Thermodynamic and kinetic models for describing microstructure evolution during joining of metals and alloys

  • Babu S
  • 3


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


An ability to predict weld microstructure is critical for introduction of new materials, as well as, optimization of existing materials. Complexity of weld microstructure evolution is related to inter- action of phase stability, multicomponent diffusion, steep temperature gradients and morpho- logical instabilities during rapid heating and cooling. In the past two decades, computational thermodynamic and kinetic models have been developed to predict these interactions in wide range of alloys. In the first section, a brief introduction of thermodynamic and kinetic models is given. Models for free energy of solid solution and compound phases, as a function of composition and temperature, are discussed. The underlying assumptions of kinetic models, including local equilibrium at the interface and conditions, are highlighted. In the second section, adoption of these models for predicting weld microstructure evolutions is demonstrated with practical examples from structural alloys. The examples focus on the phase transformations that may occur in liquid state (e.g. inclusion formation), during solidification (e.g. solidification range, phase selection, and segregation) and during solid-state transformations (e.g. growth and dissolution of second phases). In the third section, challenges and opportunities facing widespread use of these tools, as well as, validation using high-resolution and in-situ characterization tools are highlighted.

Author-supplied keywords

  • Brazing and soldering
  • Characterization
  • Metals and alloys
  • Microstructure
  • PDF available
  • Thermodynamics and kinetics
  • Welding
  • competitor information
  • see notes
  • web welding references

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Suresh S Babu

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free