Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies

  • Papadaki M
  • Bursac N
  • Langer R
 et al. 
  • 1

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

The primary aim of this study was to relate molecular and structural properties of in vitro reconstructed cardiac muscle with its electrophysiological function using an in vitro model system based on neonatal rat cardiac myocytes, three-dimensional polymeric scaffolds, and bioreactors. After 1 wk of cultivation, we found that engineered cardiac muscle contained a 120- to 160-{micro}m-thick peripheral region with cardiac myocytes that were electrically connected through gap junctions and sustained macroscopically continuous impulse propagation over a distance of 5 mm. Molecular, structural, and electrophysiological properties were found to be interrelated and depended on specific model system parameters such as the tissue culture substrate, bioreactor, and culture medium. Native tissue and the best experimental group (engineered cardiac muscle cultivated using laminin-coated scaffolds, rotating bioreactors, and low-serum medium) were comparable with respect to the conduction velocity of propagated electrical impulses and spatial distribution of connexin43. Furthermore, the structural and electrophysiological properties of the engineered cardiac muscle, such as cellularity, conduction velocity, maximum signal amplitude, capture rate, and excitation threshold, were significantly improved compared with our previous studies

Author-supplied keywords

  • BIOREACTOR
  • BIOREACTORS
  • CARDIAC-MUSCLE
  • CONDUCTION-VELOCITY
  • CONNEXIN43
  • CULTIVATION
  • CULTURE
  • Cardiac
  • Cardiac Muscle
  • Cardiac Myocytes
  • Conduction
  • Conduction Velocity
  • Culture Media
  • Electrophysiological Properties
  • Excitation
  • GAP-JUNCTIONS
  • Gap Junction
  • Group
  • IN-VITRO
  • Impulse
  • Impulses
  • JUNCTION
  • Junctions
  • LOCATION
  • MEDIA
  • MODEL
  • Muscle
  • Myocytes
  • PARAMETERS
  • Propagation
  • RAT CARDIAC MYOCYTES
  • REGION
  • Rat
  • SCAFFOLDS
  • SIGNAL
  • SPATIAL-DISTRIBUTION
  • SUBSTRATE
  • SYSTEM
  • Spatial Distribution
  • TISSUE
  • TISSUE-CULTURE
  • Threshold
  • Tissue Culture
  • Tissue Engineering
  • VITRO
  • Velocity
  • a
  • cardiac myocyte
  • gap
  • gap junctions
  • impulse propagation
  • in vitro
  • myocyte
  • native

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links

Authors

  • M Papadaki

  • N Bursac

  • R Langer

  • J Merok

  • G Vunjak-Novakovic

  • L E Freed

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free