Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation

  • Miller K
  • Joldes G
  • Lance D
 et al. 
  • 87

    Readers

    Mendeley users who have this article in their library.
  • 169

    Citations

    Citations of this article.

Abstract

We propose an efficient numerical algorithm for computing deformations of 'very' soft tissues (such as the brain, liver, kidney etc.), with applications to real-time surgical simulation. The algorithm is based on the finite element method using the total Lagrangian formulation, where stresses and strains are measured with respect to the original configuration. This choice allows for pre-computing of most spatial derivatives before the commencement of the time-stepping procedure. We used explicit time integration that eliminated the need for iterative equation solving during the time-stepping procedure. The algorithm is capable of handling both geometric and material non-linearities. The total Lagrangian explicit dynamics (TLED) algorithm using eight-noded hexahedral under-integrated elements requires approximately 35% fewer floating-point operations per element, per time step than the updated Lagrangian explicit algorithm using the same elements. Stability analysis of the algorithm suggests that due to much lower stiffness of very soft tissues than that of typical engineering materials, integration time steps a few orders of magnitude larger than what is typically used in engineering simulations are possible. Numerical examples confirm the accuracy and efficiency of the proposed TLED algorithm. Copyright © 2006 John Wiley & Sons, Ltd.

Author-supplied keywords

  • Explicit time integration
  • Finite element method
  • Soft tissues
  • Surgical simulation
  • Total Lagrangian formulation

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free