Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae

  • Li B
  • Yuan Y
  • 68

    Readers

    Mendeley users who have this article in their library.
  • 62

    Citations

    Citations of this article.

Abstract

Furfural and acetic acid are two prevalent inhibitors to microorganisms during cellulosic ethanol production, but molecular mechanisms of tolerance to these inhibitors are still unclear. In this study, genome-wide transcriptional responses to furfural and acetic acid were investigated in Saccharomyces cerevisiae using microarray analysis. We found that 103 and 227 genes were differentially expressed in the response to furfural and acetic acid, respectively. Furfural downregulated genes related to transcriptional control and translational control, while it upregulated stress-responsive genes. Furthermore, furfural also interrupted the transcription of genes involved in metabolism of essential chemicals, such as etrahydrofolate, spermidine, spermine, and riboflavin monophosphate. Acetic acid downregulated genes encoding mitochondrial ribosomal proteins and genes involved in carbohydrate metabolism and regulation and upregulated genes related to amino acid metabolism. The results revealed that furfural and acetic acid had effects on multiple aspects of cellular metabolism on the transcriptional level and that mitochondria might play important roles in response to both furfural and acetic acid. This research has provided insights into molecular response to furfural and acetic acid in S. cerevisiae, and it will be helpful to construct more resistant strains for cellulosic ethanol production.

Author-supplied keywords

  • Acetic acid
  • Bioethanol
  • Furfural
  • Lignocellulose
  • Microarray

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free