Transition metal-catalyzed polymerization of 1,3,5-trioxane

  • Lindner E
  • Henes M
  • Wielandt W
 et al. 
  • 10


    Mendeley users who have this article in their library.
  • 8


    Citations of this article.


The molybdenum complexes [(η5-C5Me5) Mo(CO)3OTf] (1a), [(η5-C5H5)Mo(CO)3X] (2a-2c) (X=F3CSO3(a), F3CCO2(b), BF4(c)), and [(η5-C5H4CO2CH3)Mo(CO)3OTf] (3a) catalyze the cationic ring-opening polymerization (ROP) of 1,3,5-trioxane to polyoxymethylene (POM, 5). Hitherto unknown 3a is accessible by treatment of [(η5-C5H4CO2CH3)Mo(CO)3CH3] with CF3SO3H. The precipitation time of the polymerization, which is defined in the following as the time until precipitation starts, is dependent on the Lewis acidity of the transition metal center and the presence of formaldehyde or water.13C-labeled formaldehyde was copolymerized with 1,3,5-trioxane and randomly incorporated into POM. This observation supports the conception that formaldehyde is reversibly formed during the polymerization. Catalyst 2a was successfully applied in the ROP of trioxane even in the presence of up to 3.6 mol% of water. Time-dependent1H-NMR spectroscopic investigations of the trioxane polymerization revealed the formation of methoxymethyl formate (4) as a by-product, an isomer of trioxane. In the presence of 2a as a catalyst, 4 was degraded to methyl formate (6) and POM (5) in a ratio of about 2:1. This degradation was monitored by1H-NMR spectroscopy. Catalyst 2a is also able to copolymerize 1,3,5-trioxane with 1,3-dioxepane leading to a thermally stable copolymer after treatment with an aqueous solution of Na2CO3. © 2003 Elsevier Science B.V. All rights reserved.

Author-supplied keywords

  • Formaldehyde
  • Homogeneous catalysis
  • Molybdenum
  • Polyoxymethylene
  • Trioxane
  • X-ray structures

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free