Transparency maximization methodology for haptic devices

  • Vlachos K
  • Papadopoulos E
  • 12

    Readers

    Mendeley users who have this article in their library.
  • 24

    Citations

    Citations of this article.

Abstract

In this paper, a design methodology is presented aimed at maximizing haptic device transparency, as seen from the user side. The methodology developed focuses on endpoint side fidelity, and optimizes not only mechanism dimensions, but also all relevant design parameters including relative position of end-point desired path to device location, motor transmission ratios, and rotor inertias or motor sizes. The methodology is applied to a 5-degree-of-freedom (5-DOF) haptic device, part of a training medical urological simulator, and is applicable to any haptic mechanism. The transparency maximization is achieved using a multi-variable optimization approach and an objective function including mechanism-induced parasitic torques/forces and motor and transmission parameters, as seen from the user side, under several constraints. The objective function and the kinematical and operational constraints are described and discussed. A new 5-DOF haptic mechanism is constructed according to the developed procedure, resulting in a substantially improved device with respect to an existing one, developed with a standard optimization method. © 2006 IEEE.

Author-supplied keywords

  • Haptic devices
  • Multivariable optimization
  • Training medical simulators

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free