Type i collagen-functionalized supported lipid bilayer as a cell culture platform

  • Huang C
  • Cho N
  • Hsu C
 et al. 
  • 33


    Mendeley users who have this article in their library.
  • 31


    Citations of this article.


The supported phospholipid bilayer serves as an important biomimetic model for the cell membrane in both basic and applied scientific research. We have constructed a biomimetic platform based on a supported phospholipid bilayer that is functionalized with type I collagen to serve as a substrate for cell culture. To create the type I collagen-functionalized lipid bilayer assembly, a simple chemical approach was employed: lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl) (DP-NGPE), a carboxylic acid-functionalized phospholipid, were prepared and then fused onto an SiO(2) substrate to form a supported lipid bilayer. Subsequently, type I collagen molecules were introduced to form stable collagen-lipid conjugates via amide linkages with activated DP-NGPE lipids. The binding kinetics of the conjugation process and the resultant changes in film thickness and viscoelasticity were followed using the quartz crystal microbalance with dissipation (QCM-D) monitoring. The morphology of the conjugated collagen adlayer was investigated with atomic force microscopy (AFM). We observed that the adsorbed collagen molecules tended to self-assemble into fibrillar structures. Fluorescence recovery after photobleaching (FRAP) was utilized to estimate lateral lipid mobility, which was reduced by up to 20% after the coupling of type I collagen to the underlying lipid bilayer. As a cell culture platform, the collagen-conjugated supported lipid bilayer showed promising results. Smooth muscle cells (A10) retained normal growth behavior on the collagen-functionalized platform, unlike the bare POPC lipid bilayer and the POPC/DG-NGPE bilayer without collagen. The biomimetic functionalized lipid system presented here is a simple, yet effective approach for constructing a cell culture platform to explore the interactions between extracellular matrix components and cells.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Chun Jen Huang

  • Nam Joon Cho

  • Chih Jung Hsu

  • Po Yuan Tseng

  • Curtis W. Frank

  • Ying Chih Chang

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free