Ultrafast dynamics of isolated fluorenone

  • Köhler J
  • Hemberger P
  • Fischer I
 et al. 
  • 9

    Readers

    Mendeley users who have this article in their library.
  • 11

    Citations

    Citations of this article.

Abstract

The ultrafast dynamics of isolated 9-fluorenone was studied by femtosecond time-resolved photoionization and photoelectron spectroscopy. The molecule was excited around 264-266 nm into the S(6) state. The experimental results indicate that the excitation is followed by a multistep deactivation. A time constant of 50 fs or less corresponds to a fast redistribution of energy within the initially excited manifold of states, i.e., a motion away from the Franck-Condon region. Internal conversion to the S(1) state then proceeds within 0.4 ps. The S(1) state is long-lived, and only a lower bound of 20 ps can be derived. In addition, we computed excited state energies and oscillator strengths by TD-DFT theory, supporting the interpretation of the experimental data.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free