Ultrahigh interlayer friction in multiwalled boron nitride nanotubes

95Citations
Citations of this article
149Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Friction at the nanoscale has revealed a wealth of behaviours that depart strongly from the long-standing macroscopic laws of Amontons-Coulomb. Here, by using a 'Christmas cracker' -type of system in which a multiwalled nanotube is torn apart between a quartz-tuning-fork-based atomic force microscope (TF-AFM) and a nanomanipulator, we compare the mechanical response of multiwalled carbon nanotubes (CNTs) and multiwalled boron nitride nanotubes (BNNTs) during the fracture and telescopic sliding of the layers. We found that the interlayer friction for insulating BNNTs results in ultrahigh viscous-like dissipation that is proportional to the contact area, whereas for the semimetallic CNTs the sliding friction vanishes within experimental uncertainty. We ascribe this difference to the ionic character of the BN, which allows charge localization. The interlayer viscous friction of BNNTs suggests that BNNT membranes could serve as extremely efficient shock-absorbing surfaces. © 2014 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Niguès, A., Siria, A., Vincent, P., Poncharal, P., & Bocquet, L. (2014). Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nature Materials, 13(7), 688–693. https://doi.org/10.1038/nmat3985

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free