Ultrasonic acoustic emissions from the sapwood of cedar and hemlock : an examination of three hypotheses regarding cavitations.

  • Tyree M
  • Dixon M
  • Tyree E
 et al. 
  • 26


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Measurements are reported of ultrasonic acoustic emissions (AEs) measured from sapwood samples of Thuja occidentalis L. and Tsuga canadensis (L.) Carr. during air dehydration. The measurements were undertaken to test the following three hypotheses: (a) Each cavitation event produces one ultrasonic AE. (b) Large tracheids are more likely to cavitate than small tracheids. (c) When stem water potentials are >-0.4 MPa, a significant fraction of the water content of sapwood is held by ;capillary forces.' The last two hypotheses were recently discussed at length by M. H. Zimmermann. Experimental evidence consistent with all three hypotheses was obtained. The evidence for each hypothesis respectively is: (a) the cumulative number of AEs nearly equals the number of tracheids in small samples; (b) more water is lost per AE event at the beginning of the dehydration process than at the end, and (c) sapwood samples dehydrated from an initial water potential of 0 MPa lost significantly more water before AEs started than lost by samples dehydrated from an initial water potential of about -0.4 MPa. The extra water held by fully hydrated sapwood samples may have been capillary water as defined by Zimmerman.We also report an improved method for the measurement of the ;intensity' of ultrasonic AEs. Intensity is defined here as the area under the positive spikes of the AE signal (plotted as voltage versus time). This method was applied to produce a frequency histogram of the number of AEs versus intensity. A large fraction of the total number of AEs were of low intensity even in small samples (4 mm diameter by 10 mm length). This suggests that the effective ;listening distance' for most AEs was less than 5 to 10 mm.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • M T Tyree

  • M A Dixon

  • E L Tyree

  • R Johnson

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free