Uncertainty relations from simple entropic properties

  • Coles P
  • Colbeck R
  • Yu L
 et al. 
  • 67

    Readers

    Mendeley users who have this article in their library.
  • 78

    Citations

    Citations of this article.

Abstract

Uncertainty relations provide constraints on how well the outcomes of incompatible measurements can be predicted, and as well as being fundamental to our understanding of quantum theory, they have practical applications such as for cryptography and witnessing entanglement. Here we shed new light on the entropic form of these relations, showing that they follow from a few simple properties, including the data-processing inequality. We prove these relations without relying on the exact expression for the entropy, and hence show that a single technique applies to several entropic quantities, including the von Neumann entropy, min- and max-entropies, and the Rényi entropies.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free