Unfolding of hen egg lysozyme by molecular dynamics simulations at 300K: Insight into the role of the interdomain interface

  • Gilquin B
  • Guilbert C
  • Perahia D
  • 24


    Mendeley users who have this article in their library.
  • 24


    Citations of this article.


We present the results of two 1.2 ns molecular dynamics (MD) unfolding simulations on hen egg lysozyme in water at 300K, performed using a new procedure called PEDC (Path Exploration With Distance Constraints). This procedure allows exploration of low energy structures as a function of increasing RMSD from the native structure, and offers especially the possibility of extensive exploration of the conformational space during the initial unfolding stages. The two independent MD simulations gave similar chronology of unfolding events: disruption of the active site, kinking of helix C, partial unfolding of the three-stranded beta-sheet to a two-stranded sheet (during which the helices A, B, and D remain to a great extent native), and finally unfolding of the beta-domain and partial unfolding of the alpha-domain in which hydrophobic clusters persist. We show particularly that the loss of hydrophobic contacts between the beta-sheet turn residues Leu55 and Ile56 and the hydrobic patch of the alpha-domain destabilizes the beta-domain and leads to its unfolding, suggesting that the correct embedding of these residues in the alpha-beta interface may constitute the rate limiting step in folding. These results are in accord with experimental observations on the folding/unfolding behavior of hen egg lysozyme at room temperature. They would also explain the loss of stability and the tendency to aggregation observed for the mutant Leu55Thr, and the slow refolding kinetics observed in the analogous amyloidogenic variant of human lysozyme.

Author-supplied keywords

  • Folding intermediate
  • Lysozyme
  • Nonnative structures
  • Protein unfolding

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free