A Unified Approach to Computing Real and Complex Zeros of Zero-Dimensional Ideals

  • Lasserre J
  • Laurent M
  • Rostalskl P
  • 5


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


In this paper we propose a unified methodology for computing the set V K (I) of complex (K = ℂ) or real (K = ℝ) roots of an ideal R[x], assuming Vk (I ) is finite. We show how moment matrices, defined in terms of a given set of generators of the ideall, can be used to (numerically) find not only the real variety V R (I), as shown in the Authors’ previous work, but also the complex variety V c (I), thus leading to a. unified treatment of the algebraic and real algebraic problem. In contrast to the real algebraic version of the algorithm, the complex analogue only uses basic numerical linear algebra because it does not require positive semidefiniteness of the moment matrix and so avoids semidefinite programming techniques. The links between these algorithms and other numerical algebraic methods arc outlined and their stopping criteria are related.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in


  • Jean Bernard Lasserre

  • Monique Laurent

  • Philipp Rostalskl

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free