An unsupervised learning method to identify reference intervals from a clinical database

  • Poole S
  • Schroeder L
  • Shah N
  • 22

    Readers

    Mendeley users who have this article in their library.
  • 3

    Citations

    Citations of this article.

Abstract

Reference intervals are critical for the interpretation of laboratory results. The development of reference intervals using traditional methods is time consuming and costly. An alternative approach, known as an a posteriori method, requires an expert to enumerate diagnoses and procedures that can affect the measurement of interest. We develop a method, LIMIT, to use laboratory test results from a clinical database to identify ICD9 codes that are associated with extreme laboratory results, thus automating the a posteriori method. LIMIT was developed using sodium serum levels, and validated using potassium serum levels, both tests for which harmonized reference intervals already exist. To test LIMIT, reference intervals for total hemoglobin in whole blood were learned, and were compared with the hemoglobin reference intervals found using an existing a posteriori approach. In addition, prescription of iron supplements were used to identify individuals whose hemoglobin levels were low enough for a clinician to choose to take action. This prescription data indicating clinical action was then used to estimate the validity of the hemoglobin reference interval sets. Results show that LIMIT produces usable reference intervals for sodium, potassium and hemoglobin laboratory tests. The hemoglobin intervals produced using the data driven approaches consistently had higher positive predictive value and specificity in predicting an iron supplement prescription than the existing intervals. LIMIT represents a fast and inexpensive solution for calculating reference intervals, and shows that it is possible to use laboratory results and coded diagnoses to learn laboratory test reference intervals from clinical data warehouses.

Author-supplied keywords

  • Electronic health record
  • Laboratory tests
  • Reference intervals
  • Unsupervised learning

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free