Updating a credit-scoring model based on new attributes without realization of actual data

  • Ju Y
  • Sohn S
  • 61

    Readers

    Mendeley users who have this article in their library.
  • 13

    Citations

    Citations of this article.

Abstract

Funding small and medium-sized enterprises (SMEs) to support technological innovation is critical for national competitiveness. Technology credit scoring models are required for the selection of appropriate funding beneficiaries. Typically, a technology credit-scoring model consists of several attributes and new models must be derived every time these attributes are updated. However, it is not feasible to develop new models until sufficient historical evaluation data based on these new attributes will have accumulated. In order to resolve this limitation, we suggest the framework to update the technology credit scoring model. This framework consists of ways to construct new technology credit-scoring model by comparing alternative scenarios for various relationships between existing and new attributes based on explanatory factor analysis, analysis of variance, and logistic regression. Our approach can contribute to find the optimal scenario for updating a scoring model. © 2013 Elsevier B.V. All rights reserved.

Author-supplied keywords

  • ANOVA
  • Credit-scoring model
  • Exploratory factor analysis (EFA)
  • Finance
  • Logistic regression analysis
  • Small and medium enterprise

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free