Using Bayesian networks in reliability evaluation for subsea blowout preventer control system

  • Cai B
  • Liu Y
  • Liu Z
 et al. 
  • 48


    Mendeley users who have this article in their library.
  • 44


    Citations of this article.


The Bayesian network models of redundant systems including parallel system and voting system, taking account of common cause failure and imperfect coverage, are proposed. The Triple Modular Redundancy (TMR) and Double Dual Modular Redundancy (DDMR) control systems for subsea Blowout Preventer (BOP) are presented. By applying the proposed Bayesian network models, the reliability of subsea BOP control systems are evaluated at any given time, and the difference between posterior and prior probabilities of each single component given the system failure is obtained. The effects of coverage factor of redundant subsystem and failure rate of single component on reliability of systems are also researched. The results show that the DDMR control system has a little higher reliability than TMR system. To improve the reliability of subsea BOP control systems, the component failure rates of Ethernet switch (ES), programmable logic controller (PLC) and personal computer (PC) should be reduced for TMR system, whereas the failure rates of ES and PC should be reduced for DDMR system. The recovery mechanism of PLC, PC and ES subsystems, and PC and ES subsystems should be paid more attention for TMR and DDMR control systems, respectively. © 2012 Elsevier Ltd.

Author-supplied keywords

  • Bayesian networks
  • Common cause failure
  • Imperfect coverage
  • Reliability
  • Subsea blowout preventer

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free