VEGF-E enhances endothelialization and inhibits thrombus formation on polymeric surfaces

  • Knetsch M
  • Koole L
  • 15


    Mendeley users who have this article in their library.
  • 10


    Citations of this article.


Thrombotic complications of long-term blood-contacting devices can be avoided by formation of an endothelial cell layer on the blood-contacting surface. The endothelial cells form a bioactive boundary between the synthetic surface and blood, regulating haemostasis and inflammation. Biofunctionalization of synthetic blood-contacting surfaces is necessary to accommodate growth of endothelial cells. Vascular endothelial growth factor E (VEGF-E) or collagen I may stimulate endothelialization of a polymeric surface coating of a prototype small diameter vascular prosthesis. VEGF-E was produced in Escherichia coli and could be easily purified in large quantities. Recombinant VEGF-E or purified collagen I was allowed to adsorb onto the polymeric surfaces and enhanced formation of an endothelial cell layer. Adsorption of VEGF-E was increased by the inclusion of the anti-coagulant drug heparin in the polymeric coating. Collagen I adsorption induced rapid thrombin generation and increased platelet adhesion on surfaces with or without heparin. VEGF-E inhibited thrombus formation, and did not interfere with the anti-thrombogenic effect of heparin. Additionally, VEGF-E did not affect platelet adhesion. Adsorption of VEGF-E, especially on heparin containing surfaces, provides an economical strategy to improve endothelialization of cardiovascular implants without disturbing blood-compatibility.

Author-supplied keywords

  • Blood compatibility
  • Endothelialization
  • Heparin
  • Vascular endothelial growth factor
  • Vascular graft

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free