View-Based Cognitive Mapping and Path Planning

  • Schölkopf B
  • Mallot H
  • 74


    Mendeley users who have this article in their library.
  • 90


    Citations of this article.


This article presents a scheme for learning a cognitive map of a maze from a sequence of views and movement decisions. The scheme is based on an intermediate representation called the view graph, whose nodes correspond to the views whereas the labeled edges represent the movements leading from one view to another. By means of a graph theoretical reconstruction method, the view graph is shown to carry complete information on the topological and directional structure of the maze. Path planning can be carried out directly in the view graph without actually performing this reconstruction. A neural network is presented that learns the view graph during a random exploration of the maze. lt is based on an unsupervised competitive learning rule translating temporal sequence (rather than similarity) of views into connectedness in the network. The network uses its knowledge of the topological and directional structure of the maze to generate expectations about which views are likely to be encountered next, improving the view-recognition performance. Numerical simulations illustrate the network's ability for path planning and the recognition of views degraded by random noise. The results are compared to findings of behavioral neuroscience.

Author-supplied keywords

  • cognitive maps
  • exploration; topology-preserving maps
  • neural networks
  • path planning
  • perception for action

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free