Viscous Flowcomputations on Smooth Cylinders a Detailed Numerical Study With Validation

  • Vaz G
  • van der Wal R
  • Mabilat C
 et al. 
  • 10


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


The objective of this paper is to investigate several numerical and modelling features that the CFD community is currently using to compute the flow around a fixed smooth circular cylinder Two high Reynolds numbers, 9 x 10(4) and 5 x 10(5), are chosen which are in the so called drag-crisis region. Using a viscous flow solver these features are assessed in terms of quality by comparing the numerical results with experimental data. The study involves grid sensitivity, time step sensitivity, the use of different turbulence models, three-dimensional effects, and a RANS/DES (Reynolds Averaged Navier Stokes, Detached Eddy Simulation) comparison. The resulting drag forces and Strouhal numbers are compared with experimental data of different sources. Major flow features such as velocity and vorticity fields are presented. One of the main conclusions of the present study is that all models predict forces which are far from the experimental values, particularly for the higher Reynolds numbers in the drag-crisis region. Three-dimensional and unsteadiness effects are present, but are only fully captured by sophisticated turbulence models or by DES. DES seems to be the, key to better solve the flow problem and obtain better agreement with experimental data. However its considerable computational demands still do not allow to use it for engineering design purposes.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • G Vaz

  • R van der Wal

  • C Mabilat

  • P Gallagher

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free