In vivo footprinting of a muscle specific enhancer by ligation mediated PCR

892Citations
Citations of this article
130Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In vivo protein-DNA interactions at the developmentally regulated enhancer of the mouse muscle creatine kinase (MCK) gene were examined by a newly developed polymerase chain reaction (PCR) footprinting procedure. This ligation mediated, single-sided PCR. technique permits the exponential amplification of an entire sequence ladder. Several footprints were detected in terminally differentiated muscle cells where the MCK gene is actively transcribed. None were observed in myogenic cells prior to differentiation or in nonmuscle cells. Two footprints appear to correspond to sites that can bind the myogenic regulator MyoD1 in vitro, whereas two others represent muscle specific use of apparently general factors. Because MyoD1 is synthesized by undifferentiated myoblasts, these data imply that additional regulatory mechanisms must restrict the interaction between this protein and its target site prior to differentiation.

Cite

CITATION STYLE

APA

Mueller, P. R., & Wold, B. (1989). In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science, 246(4931), 780–786. https://doi.org/10.1126/science.2814500

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free