Journal article

Weather response to a large wind turbine array

Barrie D, Kirk-Davidoff D ...see all

Atmospheric Chemistry and Physics, vol. 10, issue 2 (2010) pp. 769-775

  • 6


    Mendeley users who have this article in their library.
  • 40


    Citations of this article.
Sign in to save reference


Electrical generation by wind turbines is increasing rapidly, and has been projected to satisfy 15% of world electric demand by 2030. The extensive installation of wind farms would alter surface roughness and significantly impact the atmospheric circulation due to the additional surface roughness forcing. This forcing could be changed deliberately by adjusting the attitude of the turbine blades with respect to the wind, which would enable the 'management' of a large array of wind turbines. Using a General Circulation Model (GCM), we represent a continent-scale wind farm as a distributed array of surface roughness elements. Here we show that initial disturbances caused by a step change in roughness grow within four and a half days such that the flow is altered at synoptic scales. The growth rate of the induced perturbations is largest in regions of high atmospheric instability. For a roughness change imposed over North America, the induced perturbations involve substantial changes in the track and development of cyclones over the North Atlantic, and the magnitude of the perturbations rises above the level of forecast uncertainty.

Author-supplied keywords

  • wake

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • D B Barrie

  • D B Kirk-Davidoff

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free