Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression.

  • Owen-Schaub L
  • Zhang W
  • Cusack J
 et al. 
  • 67

    Readers

    Mendeley users who have this article in their library.
  • 655

    Citations

    Citations of this article.

Abstract

Fas/APO-1 is a cell surface protein known to trigger apoptosis upon specific antibody engagement. Because wild-type p53 can activate transcription as well as induce apoptosis, we queried whether p53 might upregulate Fas/APO-1. To explore this possibility, we examined human p53-null (H358 non-small-cell lung adenocarcinoma and K562 erythroleukemia) and wild-type p53-containing (H460 non-small-cell lung adenocarcinoma) cell lines. When H358 or H460 cells were transduced with a replication-deficient adenovirus expression construct containing the human wild-type p53 gene but not with vector alone, a marked upregulation (approximately a three-to fourfold increase) of cell surface Fas/APO-1 was observed by flow cytometry. Similarly, K562, cells stably transfected with a plasmid vector containing the temperature-sensitive human p53 mutant Ala-143 demonstrated a four- to sixfold upregulation of Fas/APO-1 by flow-cytometric analysis at the permissive temperature of 32.5 degrees C. Temperature-sensitive upregulation of Fas/APO-1 in K562 Ala-143 cells was verified by immunoprecipitation and demonstrated to result from enhanced mRNA production by nuclear run-on and Northern (RNA) analyses. Stably transfected K562 cells expressing temperature-insensitive, transcriptionally inactive p53 mutants (His-175, Trp-248, His-273, or Gly-281) failed to upregulate Fas/APO-1 at either 32.5 degrees or 37.5 degrees C. The temperature-sensitive transcription of Fas/APO-1 occurred in the presence of cycloheximide, indicating that de novo protein synthesis was not required and suggested a direct involvement of p53. Collectively, these observations argue that Fas/APO-1 is a target gene for transcriptional activation by p53.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • L B Owen-Schaub

  • W Zhang

  • J C Cusack

  • L S Angelo

  • S M Santee

  • T Fujiwara

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free