Wireless Sensor Network Modeling Using Modified Recurrent Neural Networks: Application to Fault Detection

  • Moustapha A
  • Selmic R
  • 23

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

This paper presents a dynamic model of wireless sensor networks (WSNs) and its application to sensor node fault detection. Recurrent neural networks (NNs) are used to model a sensor node, the node's dynamics, and interconnections with other sensor network nodes. An NN modeling approach is used for sensor node identification and fault detection in WSNs. The input to the NN is chosen to include previous output samples of the modeling sensor node and the current and previous output samples of neighboring sensors. The model is based on a new structure of a backpropagation-type NN. The input to the NN and the topology of the network are based on a general nonlinear sensor model. A simulation example, including a comparison to the Kalman filter method, has demonstrated the effectiveness of the proposed scheme.

Author-supplied keywords

  • Fault detection
  • modeling
  • neural networks (NNs)
  • wireless sensor networks (WSNs)

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • a.I. Moustapha

  • R.R. Selmic

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free