Worst-case losses from a cylindrical calorimeter for solar simulator calibration

  • Rowe S
  • Groehn A
  • Palumbo A
 et al. 
  • 12


    Mendeley users who have this article in their library.
  • 5


    Citations of this article.


High-flux solar simulators consist of lamps that mimic concentrated sunlight from a field of heliostats or parabolic dish. These installations are used to test promising solar-thermal technologies for commercial potential. Solar simulators can be calibrated with cylindrical calorimeters, devices that approximate black body absorbers. Calorimeter accuracy is crucial to solar simulator characterization and maintenance. To discover the worst-case performance of a cylindrical calorimeter during flux measurement Monte Carlo ray tracing was coupled to finite volume simulations. Results indicated that the calorimeter can exhibit an observer effect that distorts the solar simulator flux profile. Furthermore, the proposed design was sensitive to changes in calorimeter optical properties, changes that can result from oxidation and/or photobleaching over time. Design fidelity and robustness were substantially improved through the use of a beveled (conical) calorimeter aperture.

Author-supplied keywords

  • Nonimaging optical systems
  • Nonimaging optics
  • Parallel processing
  • Radiation
  • Solar energy

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Scott C. Rowe

  • Arto J. Groehn

  • Aaron W. Palumbo

  • Boris A. Chubukov

  • David E. Clough

  • Alan W. Weimer

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free