Skip to content

An assessment of CALIOP polar stratospheric cloud composition classification

by M. C. Pitts, L. R. Poole, A. Lambert, L. W. Thomason
Atmospheric Chemistry and Physics ()
Get full text at journal


This study assesses the robustness of the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) polar stratospheric cloud (PSC) composition classification algorithm - which is based solely on the spaceborne lidar data - through the use of nearly coincident gas-phase HNO3 and H2O data from the Microwave Limb Sounder (MLS) on Aura and Goddard Earth Observing System Model, Version 5 (GEOS-5) temperature analyses. Following the approach of Lambert et al. (2012), we compared the observed temperature-dependent HNO3 uptake by PSCs in the various CALIOP composition classes with modeled uptake for supercooled ternary solutions (STS) and equilibrium nitric acid trihydrate (NAT). We examined the CALIOP PSC data record from both polar regions over the period from 2006 through 2011 and over a range of potential temperature levels spanning the 15-30 km altitude range. We found that most PSCs identified as STS exhibit gas phase uptake of HNO3 consistent with theory, but with a small temperature bias, similar to Lambert et al. (2012). Ice PSC classification is also robust in the CALIOP optical data, with the mode in the ice observations occurring about 0.5K below the frost point. We found that CALIOP PSCs identified as NAT mixtures exhibit two distinct preferred modes which reflect the fact that the growth of NAT particles is kinetically limited. One mode is significantly out of thermodynamic equilibrium with respect to NAT due to short exposure times to temperatures below the NAT existence temperature, T-NAT, with HNO3 uptake dominated by the more numerous liquid droplets. The other NAT mixture mode is much closer to NAT thermodynamic equilibrium, indicating that the particles have been exposed to temperatures below T-NAT for extended periods of time. With a few notable exceptions, PSCs in the various composition classes conform well to their expected temperature existence regimes. We have a good understanding of the cause of the minor misclassifications that do occur and will investigate means to correct these deficiencies in our next generation algorithm.

Cite this document (BETA)

Readership Statistics

12 Readers on Mendeley
by Discipline
42% Chemistry
33% Earth and Planetary Sciences
17% Physics and Astronomy
by Academic Status
25% Researcher
17% Student > Ph. D. Student
17% Student > Bachelor
by Country
8% Spain

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in