Bayesian analysis of zero inflated regression models

by S K Ghosh, P Mukhopadhyay, J.-C. Lu
Journal of Statistical Planning and Inference ()

Abstract

In modeling defect counts collected from an established manufacturing processes, there are usually a relatively large number of zeros (non-defects). The commonly used models such as Poisson or Geometric distributions can underestimate the zero-defect probability and hence make it difficult to identify significant covariate effects to improve production quality. This article introduces a flexible class of zero inflated models which includes other familiar models such as the Zero Inflated Poisson (ZIP) models, as special cases. A Bayesian estimation method is developed as an alternative to traditionally used maximum likelihood based methods to analyze such data. Simulation studies show that the proposed method has better finite sample performance than the classical method with tighter interval estimates and better coverage probabilities. A real-life data set is analyzed to illustrate the practicability of the proposed method easily implemented using WinBUGS.

Cite this document (BETA)

Readership Statistics

1 Reader on Mendeley
by Discipline
 
100% Agricultural and Biological Sciences
by Academic Status
 
100% Other

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in