Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai

31Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Atmospheric particulate mercury (PHg) is recognized as a global pollutant that requires regulation because of its significant impacts on both human health and wildlife. The haze episodes that occur frequently in China could influence the transport and fate of PHg. To examine the characteristics of PHg during haze and non-haze days, size-fractioned particles were collected using thirteen-stage Nano-MOUDI samplers (10 nm-18 μm) during a severe haze episode (from December 2013 to January 2014) in Shanghai. The PHg concentration on haze days (4.11 ± 0.53 ng m-3) was three times higher than on non-haze days (1.34 ± 0.15 ng m-3). The ratio of the PHg concentration to total gaseous mercury (TGM) ranged from 0.42 during haze days to 0.21 during non-haze days, which was possibly due to the elevated concentration of particles for gaseous elemental mercury (GEM) adsorption, elevated sulfate and nitrate contributing to GEM oxidation, and the catalytic effect of elevated water-soluble inorganic metal ions. PHg/PM10 during haze days (0.019 ± 0.004 ng/μg) was lower than during non-haze days (0.024 ± 0.002 ng/μg), and PHg/PM10 was significantly reduced with an increasing concentration of PM10, which implied a relatively lower growth velocity of mercury than other compositions on particles during haze days, especially in the diameter range of 0.018-0.032 μm.During haze days, each size-fractioned PHg concentration was higher than the corresponding fraction on non-haze days, and the dominant particle size was in the accumulation mode, with constant accumulation to a particle size of 0.56-1.0 μm. The mass size distribution of PHg was bimodal with peaks at 0.32-0.56 μm and 3.1-6.2 μm on non-haze days, and 0.56-1.0 μm and 3.1-6.2 μm on haze days. There was a clear trend that the dominant size for PHg in the fine modes shifted from 0.32-0.56 μm during non-haze days to 0.56-1.0 μm on haze days, which revealed the higher growth velocity of PHg on haze days due to the condensation and accumulation of Hg in particles. Traffic emissions and coal combustion may contribute to the high concentrations of Hg, because PHg of every size was found to correlate positively with SO2, NO2, and CO. A correlation was found between every mode of PHg and relative humidity, which affected the gas-particle partitioning of semi-volatile organic compounds, resulting in effective partitioning into aerosols. The strong correlations between Hg and water-soluble ions implied the oxidation of elemental Hg was the main gas-to-particle chemical transformation process.

Cite

CITATION STYLE

APA

Chen, X., Balasubramanian, R., Zhu, Q., Behera, S. N., Bo, D., Huang, X., … Cheng, J. (2016). Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai. Atmospheric Environment, 131, 400–408. https://doi.org/10.1016/j.atmosenv.2016.02.019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free