Skip to content

Culture pH affects exopolysaccharide production in submerged mycelial culture of Ganoderma lucidum.

by Hyun Mi Kim, Moon Ki Park, Jong Won Yun
Applied biochemistry and biotechnology ()
Get full text at journal


In submerged culture of Ganoderma lucidum, the pH optimum for cell growth has been shown to be lower than that for exopolysaccharides (EPS) formation. Therefore, in the present study, a two-stage pH-control strategy was employed to maximize the productions of mycelial biomass and EPS. When compared, a batch culture without pH control had a maximum concentration of EPS and endopolysaccharides, which was much lower than those with pH control. Maximum mycelial growth (12.5 g/L) and EPS production (4.7 g/L) were achieved by shifting the controlled pH from 3.0 to 6.0 after day 4. The contrast between the controlled-pH process and uncontrolled pH was marked. By using various two-stage culture processes, it was also observed that culture pH has a significant affect on the yield of product, mycelial morphology, chemical composition, and molecular weight of EPS. A detailed observation of mycelial morphology revealed that the productive morphological form for EPS production was a dispersed pellet (controlled pH shifting from 3.0 to 6.0) rather than a compact pellet with a dense core area (controlled pH 4.5) or a feather-like pellet (controlled pH shifting from 6.0 to 3.0). Three different polysaccharides were obtained from each pH conditions, and their molecular weights and chemical compositions were significantly different.

Cite this document (BETA)

Readership Statistics

13 Readers on Mendeley
by Discipline
62% Agricultural and Biological Sciences
15% Medicine and Dentistry
8% Chemical Engineering
by Academic Status
31% Student > Master
15% Student > Ph. D. Student
8% Professor > Associate Professor
by Country
8% Mexico
8% Colombia

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in