Dynamical states of low temperature cirrus

25Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Low ice crystal concentration and sustained in-cloud supersaturation, commonly found in cloud observations at low temperature, challenge our understanding of cirrus formation. Heterogeneous freezing from effloresced ammonium sulfate, glassy aerosol, dust and black carbon are proposed to cause these phenomena; this requires low updrafts for cirrus characteristics to agree with observations and is at odds with the gravity wave spectrum in the upper troposphere. Background temperature fluctuations however can establish a "dynamical equilibrium" between ice production and sedimentation loss (as opposed to ice crystal formation during the first stages of cloud evolution and subsequent slow cloud decay) that explains low temperature cirrus properties. This newly-discovered state is favored at low temperatures and does not require heterogeneous nucleation to occur (the presence of ice nuclei can however facilitate its onset). Our understanding of cirrus clouds and their role in anthropogenic climate change is reshaped, as the type of dynamical forcing will set these clouds in one of two "preferred" microphysical regimes with very different susceptibility to aerosol. © 2011 Author(s).

Cite

CITATION STYLE

APA

Barahona, D., & Nenes, A. (2011). Dynamical states of low temperature cirrus. Atmospheric Chemistry and Physics, 11(8), 3757–3771. https://doi.org/10.5194/acp-11-3757-2011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free