Skip to content

Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption

by F. Costabile, F. Barnaba, F. Angelini, G. P. Gobbi
Atmospheric Chemistry and Physics ()
Get full text at journal


Characterizing chemical and physical aerosol properties is important to understand their sources, effects, and feedback mechanisms in the atmosphere. This study proposes a scheme to classify aerosol populations based on their spectral optical properties (absorption and scattering). The scheme is obtained thanks to the outstanding set of information on particle size and composition these properties contain. The spectral variability of the aerosol single scattering albedo (dSSA), and the extinction, scattering and absorption Angstrom exponents (EAE, SAE and AAE, respectively) were observed on the basis of two-year measurements of aerosol optical properties (scattering and absorption coefficients at blue, green and red wavelengths) performed in the suburbs of Rome (Italy). Optical measurements of various aerosol types were coupled to measurements of particle number size distributions and relevant optical properties simulations (Mie theory). These latter allowed the investigation of the role of the particle size and composition in the bulk aerosol properties observed. The combination of simulations and measurements suggested a general "paradigm" built on dSSA, SAE and AAE to optically classify aerosols. The paradigm proved suitable to identify the presence of key aerosol populations, including soot, biomass burning, organics, dust and marine particles. The work highlights that (i) aerosol populations show distinctive combinations of SAE and dSSA times AAE, these variables being linked by a linear inverse relation varying with varying SSA; (ii) fine particles show EAE > 1.5, whilst EAE < 2 is found for both coarse particles and ultrafine soot-rich aerosols; (iii) fine and coarse particles both show SSA > 0.8, whilst ultrafine urban Aitken mode and soot particles show SSA < 0.8. The proposed paradigm agrees with aerosol observations performed during past major field campaigns, this indicating that relations concerning the paradigm have a general validity.

Cite this document (BETA)

Readership Statistics

25 Readers on Mendeley
by Discipline
40% Earth and Planetary Sciences
32% Environmental Science
16% Physics and Astronomy
by Academic Status
48% Student > Ph. D. Student
16% Researcher
12% Professor > Associate Professor
by Country
4% United Kingdom
4% Brazil
4% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in