Skip to content

An improved criterion for new particle formation in diverse atmospheric environments

by C. Kuang, I. Riipinen, S. L. Sihto, M. Kulmala, A. V. McCormick, P. H. McMurry
Atmospheric Chemistry and Physics ()
Get full text at journal


A dimensionless theory for new particle formation (NPF) was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter L-Gamma, characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO), Atlanta (ANARChE), Boulder, and Hyytiala (QUEST II, QUEST IV, and EUCAARI) were used to test the validity of L-Gamma as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to seventy-seven NPF events and nineteen non-events (characterized by growth of pre-existing aerosol without NPF) measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude). Across this diverse data set, a nominal value of L-Gamma=0.7 was found to determine the boundary for the occurrence of NPF, with NPF occurring when L-Gamma < 0.7 and being suppressed when L-Gamma > 0.7. Moreover, nearly 45% of measured L-Gamma values associated with NPF fell in the relatively narrow range of 0.1 < L-Gamma < 0.3.

Cite this document (BETA)

Readership Statistics

28 Readers on Mendeley
by Discipline
29% Chemistry
29% Earth and Planetary Sciences
21% Environmental Science
by Academic Status
32% Researcher
29% Student > Ph. D. Student
14% Professor
by Country
7% Canada
4% India
4% Argentina

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in