Skip to content

In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007 – implications for gas- and particle-phase chemistry

by N. C. Bouvier-Brown, A. H. Goldstein, J. B. Gilman, W. C. Kuster, J. A. de Gouw
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

We quantified ambient mixing ratios of 9 monoterpenes, 6 sesquiterpenes, methyl chavicol, the oxygenated terpene linalool, and nopinone using an in-situ gas chromatograph with a quadrupole mass spectrometer (GC-MS). These measurements were a part of the 2007 Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX) at Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. To our knowledge, these observations represent the first direct in-situ ambient quantification of the sesquiterpenes alpha-bergamotene, longifolene, alpha-farnesene, and beta-farnesene. From average diurnal mixing ratio profiles, we show that alpha-farnesene emissions are dependent mainly on temperature whereas alpha-bergamotene and beta-farnesene emissions are temperature- and light-dependent. The amount of sesquiterpene mass quantified above the canopy was small (averaging a total of 3.3 ppt during the day), but nevertheless these compounds contributed 7.6% to the overall ozone-olefin loss rate above the canopy. Assuming that the monoterpene-to-sesquiterpene emission rate in the canopy is similar to that observed in branch enclosure studies at the site during comparable weather conditions, and the average yield of aerosol mass from these sesquiterpenes is 10-50%, the amount of sesquiterpene mass reacted within the Blodgett Forest canopy alone accounts for 6-32% of the total organic aerosol mass measured during BEARPEX. The oxygenated monoterpene linalool was also quantified for the first time at Blodgett Forest. The linalool mass contribution was small (9.9 ppt and 0.74 ppt within and above the canopy, respectively), but it contributed 1.1% to the total ozone-olefin loss rate above the canopy. Reactive and semi-volatile compounds, especially sesquiterpenes, significantly impact the gas- and particle-phase chemistry of the atmosphere at Blodgett Forest and should be included in both biogenic volatile organic carbon emission and atmospheric chemistry models.

Cite this document (BETA)

Authors on Mendeley

Readership Statistics

49 Readers on Mendeley
by Discipline
 
33% Environmental Science
 
24% Chemistry
 
18% Earth and Planetary Sciences
by Academic Status
 
39% Student > Ph. D. Student
 
27% Researcher
 
14% Professor > Associate Professor
by Country
 
6% United States
 
2% Germany
 
2% Belgium

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in