Skip to content

Intraseasonal oscillations in sea surface temperature, wind stress, and sea level off the central California coast

by L C Breaker, P C Liu, C Torrence
Continental Shelf Research ()


The wavelet transform is used to conduct spectral and cross-spectral analysis of daily time series of sea surface temperature (SST), surface wind stress, and sea level off the central California coast for an 18-year period from 1974 through 1991. The spectral band of primary interest is given by intraseasonal time scales ranging from 30 to 70 days. Using the wavelet transform, we examine the evolutionary behavior of the frequently observed 40-50 day oscillation originally discovered in the tropics by Madden and Julian, and explore the relative importance of atmospheric vs oceanic forcing for a range of periods where both could be important. Wavelet power spectra of each variable reveal the event-like, nonstationary nature of the intraseasonal band. Peaks in wavelet power typically last for 3-4 months and occur, on average, approximately once every 18 months. Thus, their occurrence and/or duration off central California is somewhat reduced in comparison to their presence in the tropics. Although peaks in wind stress often coincide with peaks in SST and/or sea level, no consistent relationships between the variables was initially apparent. The spectra suggest, however, that relationships between the variables, if and where they do exist, are event-dependent and thus have time scales of the same order. Cross-wavelet spectra between wind stress and SST indicate that periods of high coherence (> 0.90) occur on at least six occasions over the 18-year period of record. Phase differences tend to be positive, consistent with wind forcing. For wind stress vs sea level, the cross-wavelet spectra indicate that periods of high coherence, which tend to correlate with lags close to zero, also occur, but are less frequent. As with SST, the periods of high coherence usually coincide with events in the wavelet power spectra. The somewhat weaker relationship between wind stress and sea level may be due to an independent contribution to sea level through remote forcing by the ocean originating in the tropics. Finally, simple dynamical arguments regarding the lag relationships between the variables appear to be consistent with the cross-wavelet results. (C) 2001 Elsevier Science Ltd. All rights reserved.

Cite this document (BETA)

Readership Statistics

5 Readers on Mendeley
by Discipline
80% Earth and Planetary Sciences
20% Environmental Science
by Academic Status
40% Professor
40% Student > Doctoral Student
20% Researcher

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in