Skip to content

Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR

by T. Röckmann, S. Walter, B. Bohn, R. Wegener, H. Spahn, T. Brauers, R. Tillmann, E. Schlosser, R. Koppmann, F. Rohrer show all authors
Atmospheric Chemistry and Physics ()
Get full text at journal

Abstract

Formaldehyde of known, near-natural isotopic composition was photolyzed in the SAPHIR atmosphere simulation chamber under ambient conditions. The isotopic composition of the product H-2 was used to determine the isotope effects in formaldehyde photolysis. The experiments are sensitive to the molecular photolysis channel, and the radical channel has only an indirect effect and cannot be effectively constrained. The molecular channel kinetic isotope effect KIEmol, the ratio of photolysis frequencies j(HCHO -> CO+H-2)/j(HCDO -> CO+HD) at surface pressure, is determined to be KIEmol = 1.63(-0.046)(+0.038) . This is similar to the kinetic isotope effect for the total removal of HCHO from a recent relative rate experiment (KIEtot= 1.58 +/- 0.03), which indicates that the KIEs in the molecular and radical photolysis channels at surface pressure (approximate to 100 kPa) may not be as different as described previously in the literature.

Cite this document (BETA)

Readership Statistics

10 Readers on Mendeley
by Discipline
 
60% Earth and Planetary Sciences
 
20% Environmental Science
 
10% Agricultural and Biological Sciences
by Academic Status
 
50% Researcher
 
30% Student > Ph. D. Student
 
20% Professor > Associate Professor
by Country
 
10% Germany
 
10% Switzerland
 
10% Australia

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in