Skip to content

[Nitrification performance and microbial community analysis in carbon membrane-aerated biofilm reactor]

by H J Liu, F L Yang, H M Zhang, S W Hu, C Sun
Huan Jing Ke Xue ()


A carbon membrane-aerated biofilm reactor was developed to treat nitrogenous inorganic wastewater. Influent NH; -N concentrations and HRT were changed to investigate nitrification performance of reactor,oxygen utilization and NH4+ -N's removal loading. Biofilm's surface characteristics and dominant bacteria of nitrifier were analyzed. The results show that under the conditions of intra-membrane pressure of 0.017 MPa, influent NH4+ -N of 50 mg/L and HRT of 8 h NH4+ -N removal efficiency reaches 96% and effluent average nitrite is 17 mg/L, which benefits short-cut nitrification to a certain extent. The bacteria within biofilm consume all oxygen supplied through carbon membrane. The maximum specific removal rate of NH4+ -N is 9.7 g/(m2 x d), which is limited by the amount of bacteria grown onto carbon membrane's surface. Fluorescent in situ hybridization analysis indicates that within the biofilm Nitrosomonas and Nitrosospira are main ammonia-oxidizing bacteria and occupy about 19% and 21% of the total bacteria number, respectively. The Nitrobacter are not observed and Nitrospira are dominant nitrite-oxidizing bacteria, the fraction of which is 20% of total bacteria.

Cite this document (BETA)

Readership Statistics

1 Reader on Mendeley
by Discipline
100% Agricultural and Biological Sciences
by Academic Status
100% Student > Master

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in