and Physics What can 14 CO measurements tell us about OH ?

by M C Krol, J F Meirink, P Bergamaschi, J E Mak, D Lowe
Atmospheric Chemistry and Physics ()
Get full text at journal


Abstract. The possible use of 14CO measurements to constrain hydroxyl radical (OH) concentrations in the atmosphere is investigated. 14CO is mainly produced in the upper atmosphere from cosmic radiation. Measurements of 14CO at the surface show lower concentrations compared to the upper atmospheric source region, which is the result of oxidation by OH. In this paper, the sensitivity of 14CO mixing ratio surface measurements to the 3-D OH distribution is assessed with the TM5 model. Simulated 14CO mixing ratios agree within a few molecules 14CO cm3 (STP) with existing measurements at five locations worldwide. The simulated cosmogenic 14CO distribution appears mainly sensitive to the assumed upper atmospheric 14C source function, and to a lesser extend to model resolution. As a next step, the sensitivity of 14CO measurements to OH is calculated with the adjoint TM5 model. The results indicate that 14CO measurements taken in the tropics are sensitive to OH in a spatially confined region that varies strongly over time due to meteorological variability. Given measurements with an accuracy of 0.5 molecules 14CO cm3 STP, a good characterization of the cosmogenic 14CO fraction, and assuming perfect transport modeling, a single 14CO measurement may constrain OH to 0.20.3106 molecules OH cm3 on time scales of 6 months and spatial scales of 7070 degrees (latitudelongitude) between the surface and 500 hPa. The sensitivity of 14CO measurements to high latitude OH is about a factor of five higher. This is in contrast with methyl chloroform (MCF) measurements, which show the highest sensitivity to tropical OH, mainly due to the temperature dependent rate constant of the MCFOH reaction. A logical next step will be the analysis of existing 14CO measurements in an inverse modeling framework. This paper presents the required mathematical framework for such an analysis.

Cite this document (BETA)

Readership Statistics

18 Readers on Mendeley
by Discipline
by Academic Status
33% Ph.D. Student
17% Researcher (at a non-Academic Institution)
17% Post Doc
by Country
6% Italy
6% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in