Sign up & Download
Sign in

Quantitative Analysis of Learning Object Repositories

by X. Ochoa, E. Duval
IEEE Transactions on Learning Technologies ()


This paper conducts the first detailed quantitative study of the process of publication of learning objects in repositories. This process has been often discussed theoretically, but never empirically evaluated. Several question related to basic characteristics of the publication process are raised at the beginning of the paper and answered through quantitative analysis. To provide a wide view of the publication process, this paper analyzes four types of repositories: Learning Object Repositories, Learning Object Referatories, Open Courseware Initiatives, and Learning Management Systems. For comparison, Institutional Repositories are also analyzed. Three repository characteristics are measured: size, growth, and contributor base. The main findings are that the amount of learning objects is distributed among repositories according to a power law, the repositories mostly grow linearly, and the amount of learning objects published by each contributor follows heavy-tailed distributions. The paper finally discusses the implications that this findings could have in the design and operation of Learning Object Repositories.

Cite this document (BETA)

Readership Statistics

13 Readers on Mendeley
by Discipline
by Academic Status
46% Ph.D. Student
15% Professor
8% Doctoral Student
by Country
15% Spain
8% Chile

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in