Skip to content

Robust regularized kernel regression

by Jianke Zhu, Steven C H Hoi, Michael Rung Tsong Lyu
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics ()
Get full text at journal


Robust regression techniques are critical to fitting data with noise in real-world applications. Most previous work of robust kernel regression is usually formulated into a dual form, which is then solved by some quadratic program solver consequently. In this correspondence, we propose a new formulation for robust regularized kernel regression under the theoretical framework of regularization networks and then tackle the optimization problem directly in the primal. We show that the primal and dual approaches are equivalent to achieving similar regression performance, but the primal formulation is more efficient and easier to be implemented than the dual one. Different from previous work, our approach also optimizes the bias term. In addition, we show that the proposed solution can be easily extended to other noise-reliable loss function, including the Huber- epsilon insensitive loss function. Finally, we conduct a set of experiments on both artificial and real data sets, in which promising results show that the proposed method is effective and more efficient than traditional approaches.

Cite this document (BETA)

Readership Statistics

14 Readers on Mendeley
by Discipline
43% Computer Science
36% Engineering
14% Mathematics
by Academic Status
29% Professor > Associate Professor
21% Student > Master
21% Student > Ph. D. Student
by Country
14% Brazil
7% China

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in