Skip to content

Scale-by-scale analysis of probability distributions for global MODIS-AQUA cloud properties: How the large scale signature of turbulence may impact statistical analyses of clouds

by M. De La Torre Juárez, A. B. Davis, E. J. Fetzer
Atmospheric Chemistry and Physics ()
Get full text at journal


Means, standard deviations, homogeneity parameters used in models based on their ratio, and the probability distribution functions (PDFs) of cloud properties from the MODerate resolution Infrared Spectrometer (MODIS) are estimated globally as function of averaging scale varying from 5 to 500 km. The properties – cloud fraction, droplet effective radius, and liquid water path – all matter for cloud-climate uncertainty quantification and reduction efforts. Global means and standard deviations are confirmed to change with scale. For the range of scales considered, global means vary only within 3% for cloud fraction, 7% for liquid water path, and 0.2% for cloud particle effective radius. These scale dependences contribute to the uncertainties in their global budgets. Scale dependence for standard deviations and generalized flatness are compared to predictions for turbulent systems. Analytical expressions are identified that fit best to each observed PDF. While the best analytical PDF fit to each variable differs, all PDFs are well described by log-normal PDFs when the mean is normalized by the standard deviation inside each averaging domain. Importantly, log-normal distributions yield significantly better fits to the observations than gaussians at all scales. This suggests a possible approach for both sub-grid and unified stochastic modeling of these variables at all scales. The results also highlight the need to establish an adequate spatial resolution for two-stream radiative studies of cloud-climate interactions.

Cite this document (BETA)

Authors on Mendeley

Readership Statistics

16 Readers on Mendeley
by Discipline
63% Earth and Planetary Sciences
13% Environmental Science
13% Physics and Astronomy
by Academic Status
31% Student > Ph. D. Student
19% Professor > Associate Professor
19% Researcher
by Country
6% Germany

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in