Shear velocity logging in slow formations using the Stoneley wave

by Jeffry L Stevens
Geophysics ()


We apply an iterative, linearized inversion method to Stoneley waves recorded on acoustic logs in a borehole. Our objective is to assess inversion of Stoneley wave phase and group velocity as a practical technique for shear velocity logging in slow formations. Indirect tech- niques for shear logging are of particular importance in this case because there is no shear head wave arrival. Acoustic logs from a long-spaced sonic tool provided high-quality, low-noise data in the 1 to 10 kHz band for this experiment. A shear velocity profile estimated by inversion of a 60 ft (18.3 m) section of full-wave acoustic data correlates well with the P-wave log for the section. The inferred shear velocity ranges from 60 to 90 percent of the sound velocity of the fluid. Formal error estimates on the shear velocity are everywhere less than 5 percent. Moreover, application of the same inversion method to synthetic waveforms corroborates these error estimates. Finally, a synthetic acoustic waveform computed from inversion results is an excellent match to the observed waveform. On the basis of these results, we conclude that Stoneley-wave inversion constitutes a practical, indirect, shear-logging technique for slow formations. Success of the shear-logging method depends upon availability of high-quality, low-noise waveform data in the 1 to 4 kHz band. Given good prior estimates of compressional ve- locity and density of the borehole fluid, only rough esti- mates of borehole radius and formation density and compressional velocity are required. The existing inver- sion procedure also yields estimates of formation Q in- ferred from spectral amplitudes of Stoneley waves. This extension of the method is promising, since amplitudes of Stoneley waves in a slow formation are highly sensi- tive to formation Q. Attenuation caused by formation Q dominates over attenuation caused by fluid viscosity if the viscosity is less than about 0.1 N. s/m. However, Stoneley-wave amplitudes are also sensitive to gradients in shear velocity in the direction of propagation. In some cases, correction for the effects of shear-velocity gradients is required to obtain the formation Q from Stoneley-wave attenuation.

Cite this document (BETA)

Readership Statistics

1 Reader on Mendeley

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in