Skip to content

Simulation of random telegraph noise with 2-stage equivalent circuit

by Yun Ye, Chi Chao Wang, Yu Cao
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD ()
Get full text at journal


With the continuous reduction of CMOS device dimension, the importance of Random Telegraph Noise (RTN) keeps growing. To determine its impact on circuit performance and optimize the design, it is essential to physically model RTN effect and embed it into the standard simulation environment. In this paper, a new simulation method of time domain RTN effect is proposed to benchmark important digital circuits: (1) A two-stage L-shaped circuit is proposed to generate RTN signal by integrating a white noise source. An L-shaped circuit is a RC filter connected with an ideal comparator, where RC values are calibrated with the physical property of RTN; (2) This sub-circuit is fully compatible with SPICE, enabling the time domain analysis in nanometer scale digital design; (3) The importance of discrete RTN is demonstrated on a 32nm SRAM design and a 22nm low power ring oscillator (RO), using the proposed method. As compared to traditional 1/f noise, the impact of RTN is more significant under low voltages, leading to tremendous differences in the prediction of Vccmin and failure probability in SRAM, as well as jitter noise in RO.

Cite this document (BETA)

Readership Statistics

14 Readers on Mendeley
by Discipline
86% Engineering
7% Computer Science
7% Physics and Astronomy
by Academic Status
36% Student > Ph. D. Student
29% Student > Master
14% Student > Postgraduate

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in