Turbulence effects on the collision kernel. I: formation of velocity deviations of drops falling within a turbulent three-dimensional flow

34Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The fall of drops in three-dimensional stationary homogeneous turbulent flow is investigated. Equations for drop motion in turbulent flow and for drop velocity relative to the air are deduced, in vector and tensor forms. Homogeneous and isotropic turbulence is described using Batchelor's approximation formula which is valid both for the inertial and viscous turbulence ranges. The mean-square values of relative drop-velocity are calculated as a function of the drop size and turbulence-dissipation rate. It is shown that, for small droplets (within radii less than 50 μm) and a dissipation rate as low as 50 cm2s-3, turbulence-induced relative velocity is of the same order as the still-air terminal fall-speed. For greater dissipation rates, turbulence-induced drop-velocity relative to the air can be several times greater than terminal velocity. The mechanisms of the formation of the relative velocity are analysed. The contribution of the inertial acceleration of the flow is found to be dominant for small drops.

Cite

CITATION STYLE

APA

Pinsky, M. B., & Khain, A. P. (1997). Turbulence effects on the collision kernel. I: formation of velocity deviations of drops falling within a turbulent three-dimensional flow. Quarterly Journal of the Royal Meteorological Society, 123(542), 1517–1542. https://doi.org/10.1256/smsqj.54203

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free