Skip to content

Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)

by M A Wolff, T Kerzenmacher, K Strong, K A Walker, M Toohey, E Dupuy, P F Bernath, C D Boone, S Brohede, N Catoire, T Von Clarmann, M Coffey, W H Daffer, M De Maziere, P Duchatelet, N Glatthor, D W T Griffith, J Hannigan, F Hase, M Hopfner, N Huret, N Jones, K Jucks, A Kagawa, Y Kasai, I Kramer, H Kullmann, J Kuttippurath, E Mahieu, G Manney, C T McElroy, C McLinden, Y Mebarki, S Mikuteit, D Murtagh, C Piccolo, P Raspollini, M Ridolfi, R Ruhnke, M Santee, C Senten, D Smale, C Tetard, J Urban, S Wood show all authors
Jin, J. J. ()
Get full text at journal


The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within +/- 1 ppbv (+/- 20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within +/- 10% between 10 and 36 km. ACE-FTS HNO3 partial columns (similar to 15-30 km) show a slight negative bias of - 1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8 degrees S-76.5 degrees N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut fur Meteorologie und Klimaforschung and Instituto de Astrofisica de Andalucia (IMK-IAA) data processor is seen. Mean absolute differences are typically within +/- 0.01 ppbv between 16 and 27 kin and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the rnidlatitude JungfrauJoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching -0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16-27 km) are typically -0.05 ppbv for MIPAS nighttime and +/- 0.02 ppbv for MIPAS daytime measurements.

Cite this document (BETA)

Readership Statistics

4 Readers on Mendeley
by Discipline
25% Environmental Science
25% Computer Science
25% Physics and Astronomy
by Academic Status
50% Researcher
25% Librarian
25% Student > Ph. D. Student
by Country
25% Japan

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in