A 3D in vitro bone organ model using human progenitor cells

81Citations
Citations of this article
195Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Three-dimensional (3D) organotypic culture models based on human cells may reduce the use of complex and costly animal models, while gaining clinical relevance. This study aimed at developing a 3D osteoblastic-osteoclasticendothelial cell co-culture system, as an in vitro model to mimic the process of bone turnover. Osteoprogenitor and endothelial lineage cells were isolated from the stromal vascular fraction (SVF) of human adipose tissue, whereas CD14+ osteoclast progenitors were derived from human peripheral blood. Cells were co-cultured within 3D porous ceramic scaffolds using a perfusion-based bioreactor device, in the presence of typical osteoclastogenic factors. After 3 weeks, the scaffolds contained cells with endothelial (2.0 ±0.3%), pre/osteoclastic (14.0 ±1.4%) and mesenchymal/ osteoblastic (44.0 ±8.4%) phenotypes, along with tartrateresistant acid phosphatase-positive (TRAP+) osteoclastic cells in contact with deposited bone-like matrix. Supernatant analysis demonstrated sustained matrix deposition (by C-terminus procollagen-I propeptides), resorption (by N-terminus collagen-I telopeptides and phosphate levels) and osteoclastic activity (by TRAP-5b) only when SVF and CD14+ cells were co-cultured. Scanning electron microscopy and magnetic resonance imaging confirmed the pattern of matrix deposition and resorption. The effectiveness of Vitamin D in replacing osteoclastogenic factors indicated a functional osteoblast-osteoclast coupling in the system. The formation of human-origin bonelike tissue, blood vessels and osteoclasts upon ectopic implantation validated the functionality of the developed cell types. The 3D co-culture system and the associated non-invasive analytical tools can be used as an advanced model to capture some aspects of the functional coupling of bone-like matrix deposition and resorption and could be exploited toward the engineering of multi-functional bone substitute implants.

Cite

CITATION STYLE

APA

Papadimitropoulos, A., Scherberich, A., Güven, S., Theilgaard, N., Crooijmans, H. J. A., Santini, F., … Martin, I. (2011). A 3D in vitro bone organ model using human progenitor cells. European Cells and Materials, 21, 445–458. https://doi.org/10.22203/eCM.v021a33

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free