Bacterial cellulose as a potential scaffold for tissue engineering of cartilage

929Citations
Citations of this article
703Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Tissue constructs for cartilage with native mechanical properties have not been described to date. To address this need the bacterial cellulose (BC) secreted by Gluconacetobacter xylinus (=Acetobacter xylinum) was explored as a novel scaffold material due to its unusual material properties and degradability. Native and chemically modified BC materials were evaluated using bovine chondrocytes. The results indicate that unmodified BC supports chondrocyte proliferation at levels of approximately 50% of the collagen type II substrate while providing significant advantages in terms of mechanical properties. Compared to tissue culture plastic and calcium alginate, unmodified BC showed significantly higher levels of chondrocyte growth. Chemical sulfation and phosphorylation of the BC, performed to mimic the glucosaminoglycans of native cartilage, did not enhance chondrocyte growth while the porosity of the material did affect chondrocyte viability. The BC did not induce significant activation of proinflammatory cytokine production during in vitro macrophage screening. Hence, unmodified BC was further explored using human chondrocytes. TEM analysis and RNA expression of the collagen II from human chondrocytes indicated that unmodified BC supports proliferation of chondrocytes. In addition, ingrowth of chondrocytes into the scaffold was verified by TEM. The results suggest the potential for this biomaterial as a scaffold for tissue engineering of cartilage. © 2004 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D. L., Brittberg, M., & Gatenholm, P. (2005). Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 26(4), 419–431. https://doi.org/10.1016/j.biomaterials.2004.02.049

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free